10P Publishing

® CrossMark

RECEIVED
23 December 2020

ACCEPTED FOR PUBLICATION
11 March 2021

PUBLISHED
2 April 2021

Bioinspir. Biomim. 16 (2021) 036008

Bioinspiration & Biomimetics

PAPER

https://doi.org/10.1088/1748-3190/abedce

Differential mapping spiking neural network for sensor-based

robot control

Omar Zahra'®, Silvia Tolu?

and David Navarro-Alarcon*

! The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China

2 Technical University of Denmark, Denmark
* Author to whom any correspondence should be addressed.

E-mail: david.navarro-alarcon@polyu.edu.hk

Keywords: robotics, visual servoing, sensor-based control, spiking neural networks

Supplementary material for this article is available online

Abstract

In this work, a spiking neural network (SNN) is proposed for approximating differential
sensorimotor maps of robotic systems. The computed model is used as a local Jacobian-like
projection that relates changes in sensor space to changes in motor space. The SNN consists of an
input (sensory) layer and an output (motor) layer connected through plastic synapses, with
inter-inhibitory connections at the output layer. Spiking neurons are modeled as Izhikevich
neurons with a synaptic learning rule based on spike timing-dependent plasticity. Feedback data
from proprioceptive and exteroceptive sensors are encoded and fed into the input layer through a
motor babbling process. A guideline for tuning the network parameters is proposed and applied
along with the particle swarm optimization technique. Our proposed control architecture takes
advantage of biologically plausible tools of an SNN to achieve the target reaching task while
minimizing deviations from the desired path, and consequently minimizing the execution time.
Thanks to the chosen architecture and optimization of the parameters, the number of neurons and
the amount of data required for training are considerably low. The SNN is capable of handling
noisy sensor readings to guide the robot movements in real-time. Experimental results are
presented to validate the control methodology with a vision-guided robot.

1. Introduction

Sensor-guided object manipulation is one of the most
fundamental tasks in robotics, with many possible
approaches to perform it [1]. Conventional meth-
ods typically rely on mathematical modeling of the
observed end-effector pose and its related joint con-
figuration. These methods provide accurate solutions,
however, they require exact knowledge of the ana-
lytical sensor-motor relations (which might not be
known); furthermore, these conventional methods
are generally not provided with adaptation mecha-
nisms to cope with uncertainties/changes in the sen-
sor setup.

Among the many interesting cognitive abilities
of humans (and animals, in general) is the motor
babbling process that leads to the formation of sen-
sorimotor maps [2]. By relying on such adaptive
maps, humans can learn to perform many motion
tasks in an efficient way. These advanced capabilities

have motivated many research studies that attempt to
artificially replicate such skills in robots and machines
[3, 4]. Our aim in this work is to develop a bio-
inspired adaptive computational method to guide the
motion of robots with real-time sensory information
and a limited amount of data.

Data-driven computational maps have been pre-
viously built for approximating unknown sensorimo-
tor relations [5—7]. One common limitation of these
classical approaches is the demand for a high num-
ber of training data points and high computational
power, which is impractical in many cases.

By drawing inspiration from the central nervous
system, artificial neural networks (ANN) have been
built and used for many decades. It started with
the McCulloch—Pitts model as the first generation of
ANN by using binary computing units [8], followed
by the second generation utilizing mainly the sig-
moidal (or tanh) activation function to make it more
capable of approximating non-linear functions [9].

© 2021 IOP Publishing Ltd



10P Publishing

Bioinspir. Biomim. 16 (2021) 036008

Taking one step further, spiking neuronal network
(SNN) (representing the third generation of ANNs)
are designed to incorporate most of the neuronal
dynamics which provide them with more complex
and realistic firing patterns based on spikes [10].
These spikes are generated based on functions relating
the current and membrane potential in the neuronal
units, unlike the activation functions used to gener-
ate the output in non-spiking neurons. In this work,
we have built an adaptive SNN-based model to guide
robots with sensory feedback.

The main exclusive property of SNN is the incor-
poration of a temporal dimension; note that the rela-
tive timing of spikes (and spike sequences) enables the
encoding of useful information. The temporal dimen-
sion allows a single spiking neuron to achieve a task
carried out by hundreds of non-spiking neurons in
some cases [10]. This is supported by observations in
simple living organisms, as insects and worms, which
can perform complex tasks by relying only on few
neurons [11, 12]. As in real biological systems, SNNs
hold an advantage for real-time processing (as con-
cluded in [13] for the visual system) and multiplexing
of information (such as amplitude and frequency in
the auditory system [14]). For robotic applications,
the SNN allows building computational models of
brain regions to imitate intelligent behavior in liv-
ing organisms to a great extent, and in some cases
even reveal the mysteries of the inner workings of
the brain [15—17]. The currently rising neuromorphic
chips allow real-time operation of such models while
conserving power greatly compared to conventional
systems [18]. While an SNN allows building a more
biologically plausible system, its complexity makes
it more difficult to predict and analyze the behav-
ior of the system. To this end, various methods can
be used, e.g. simplifying the network’s mathematical
description [19] or applying techniques for tuning the
parameters to achieve the desired performance [20].
The latter approach is the one addressed in this work.

Several studies have provided examples of the
application of SNN in robotics [21]. However, in most
studies, robots were only controlled in a simulation
environment [22]. The main reason is due to the
large size of the neural networks used in these works,
which makes it impractical for real-time operations.
In [20], a cognitive architecture is used for control-
ling a robotic hand to perform grasping motions. In
[23], an SNN was used for learning motion prim-
itives of a robot to move in three axes (left-right,
up—down, and far—near). In [24], a self-organizing
architecture was used to build an SNN representing
spatio-motor transformations (i.e., kinematics) of a
two degrees of freedom (DOF) robot. Despite its good
performance and biological plausibility, the network’s
size and limited scalability make it impractical for
real-time control.

In [25], an SNN with learning based on spike
timing-dependent plasticity (STDP) was used to build

O Zahra et al

the kinematics of a robot. Although the synaptic
connections illustrate the ability to approximate
the kinematic relation, the approximation error is
not evident. Additionally, an intermediate layer is
required to scale up the dimensions of the input sen-
sory data, and consequently, the relative computa-
tional power.

In this paper, we propose an SNN-based control
architecture to guide robots with sensor feedback.
Our proposed neural controller adaptively builds a
differential map that correlates end-effector velocities
(as measured by an external vision sensor) with joint
angular velocities. In other words, it effectively works
as a local Jacobian-like transformation between dif-
ferent (sensor-motor) spaces. The proposed network
has the following valuable features:

e Inter-inhibitory connections at the output layer

exhibiting a winner takes all effect.

e Biologically plausible tools as building blocks.

e A proposed guideline for network parameters

tuning.

To the best of the authors” knowledge, this is the
first study to report an SNN-based method capable of
forming the sensor-motor differential map in a com-
putationally efficient way [resulting from an intuitive
guideline to adjust its parameters along with the par-
ticle swarm optimization (PSO)]. This leads to a great
reduction in the number of neurons compared to pre-
vious works in the literature [20, 23, 26] by more than
10 folds, and thus a real-time operation even with
moderate computational power available. Therefore,
this study contributes to:

(a) Exploiting the capabilities of a two-layer SNN
with a minimalistic number of neurons.

(b) Validating the proposed claims through a
detailed experimental study with a robotic plat-
form performing vision-guided manipulation
tasks.

The rest of this paper is structured as follows:
section 2 describes the developed spiking neural net-
work; section 3 presents the verification of the method
proposed through a dummy test; section 4 presents
the experimental results; section 5 discusses the meth-
ods and results; section 6 gives the conclusions.

2. Methods

Many studies have suggested that humans use internal
models to represent perception and action [27-29].
Some researchers have built computational models of
brain areas (e.g., the cerebellum) responsible for the
generation and coordination of fine motor actions
(30, 31].

Unlike in traditional robot control (where sen-
sory transformations to motion commands are solved
analytically), in the human brain (motor cortex) the
sensorimotor relations are encoded by specific neural




10P Publishing

Bioinspir. Biomim. 16 (2021) 036008

circuits. To carry out a typical (eye-to-hand) visual
servoing task, we must first establish the kinematic
relation between the joint velocities and the measured
end-effector motion [32]. This model can be formu-
lated for m DOFs and n Cartesian DOFs as x = ](9)9,
such that:

Ox; Ox,

O=\: - | (1)
Ox, Ox,
09, T 90,

where x € R", € R™, 6 € R™ and J(0) € R"™™ are
the (observed) spatial velocity, joint angles, joint
velocities, and the Jacobian matrix, respectively (with-
out loss of generality, we assume that m > n).

For velocity-based control, it is necessary to esti-
mate the joint velocities to achieve a certain spatial
velocity. This expression is denoted as:

6 = J*#(0)x, (2)

where J# is the pseudo-inverse of the J. In
this work, a differential mapping spiking neu-
ral network (DMSNN) is proposed to build a
computational model analogous to the Jacobian
transformation relating changes in 1 joint-space DoF
to 1 task-space DoF.

As shown in figure 1, the network is first sub-
jected to the training phase in which both sensory
readings and motor commands are fed to the net-
work through motor babbling by executing random
motions. After training the network for several iter-
ations, the differential mapping is formed by the
modulation of the connection between the input and
output layers. Then, the network can be used during
the control phase to guide the robot through the esti-
mation of the required motor command to reach the
desired target by feeding the sensory information to
the input layer. This can be seen as an approximation
of the motor cortex which is responsible for convert-
ing the desired motion into a motor command to be
executed by other regions in the brain [33]. Details of
the proposed network are described in the rest of this
section.

2.1. Network layout

Network layout of the proposed neural controller is
shown in figure 2, where each dimension of sen-
sory input (joint angles and spatial velocity) and
motor output (joint velocity) is represented by a
one-dimensional array (assembly) of neurons. The
complete network consists of n + 2m assemblies of
neurons. The input sensory layer consists of assem-
blies I/ encoding the joint angles and 1 encod-
ing the spatial velocity, while the output motor layer
consists of [/ encoding the joint velocity controls.
Each sensory neuron is connected through an exci-
tatory and inhibitory synapse (which is omitted in

O Zahra et al

figure 2 for clarity) to each motor neuron. This acts
as a substitute for adding an inhibitory interneuron
and allows for stable learning dynamics while avoid-
ing an unbounded increase in connection strength
and neuron activity. Additionally, each of the neurons
encoding the output at each assembly (dimension)
01.m is connected to the neurons of the same assembly
through nonplastic inhibitory connections:

—(k =12
Efj = exp (7(2111\71;3 ) -1, (3)

where £;; denotes the strength of the non-plastic con-
nection between neurons k and j, o, is the standard
deviation, and N, is the number of neurons in the
assembly. Therefore, the further the neuron is, the
stronger the inhibition activity is. This approximates
the behavior of a winner-take-all effect, but with a
change in the inhibitory value depending on the prox-
imity to the winner neuron (ensuring a continuous
and more robust output).

2.2. Training phase and control phase

For the proposed network to form the desired
differential map, the information needs to
be input/encoded into the network and
extracted/decoded in a proper way. To be able
to convert the signals from and to the network prop-
erly, the encoders (converting signals to spikes) and
decoders (converting spikes to signals) are used. The
input to the sensory layer (during the training and
control phases) and motor layers (during the training
phase only) is calculated for each neuron based on
its preferred (central) value v’ as shown in figure 3.
Thus, the tuning curve for the encoders is chosen to
be the Gaussian distribution. The input current to a

neuron i for a certain input can be formulated as:
P2
ymne ()
where 1 is the input value, A is the amplitude of the
input current, and o is calculated based on the num-
ber of neurons per layer Nj, and the range of change
of the variable to be encoded from ¥ ,;, to W ... This
leads to the contribution of the whole layer to encode
a particular value (a process that can be interpreted
as ‘population coding’ [34]). The value of A is chosen
based on the neuron parameters and different values
A, and Ay, are assigned for the sensory and motor lay-
ers, respectively. The choice of A; and A, along with
the neuron parameters allows to have a controlled
firing activity and hence a controlled learning process.
To get the estimated output from the network, a
proper decoding function has to be chosen. Among
the various decoding methods, the central neuron
voting scheme is selected to calculate the decoded
value corresponding to the firing rate of all the neu-
rons of a layer. This can be modeled for a specific time




10P Publishing

Bioinspir. Biomim. 16 (2021) 036008

O Zahra et al

Training Phase Visual
g Robot Tracking
Proprioception 0 a5
Motor Babbling 6 Y
Random Angle|0d + 0"069 W= Ky €y Wd Motor Action %
Generator 2= I € Il T
a2 vy= lfg eﬁ' Ud Control Phase
- xr 2 N
2 Robot DMSNN ] S
Visual w o o g “H S
Trackin, — £
g Proprioception [ ..§ l g .ﬂ§ 0. |4 LS L§
P S l S
)
N lé) )
mee ) |IE
Figure 1. A schematic diagram for both the training and control phases for the DMSNN. The signals introduced to each neuron
assembly are depicted. During the training phase, the robot’s motion is guided by motor babbling in joint space. During the
control phase, the robot’s motion is guided by motor commands decoded from the activity of motor neurons at the output layer.

1 Ln

61 Om

000@000| |0e®@00000

000@000|--[00000C0e

’
[}

b~

~-

ooooooqmooooooo

Om ‘\ —"817

——p» Excitatory Plastic Synapse
Inhibitory Non-Plastic Synapse

non-plastic synapses &j;.

Figure 2. The layout of the proposed spiking neural network. Input (sensory) neurons are connected to output (motor) neurons
through excitatory and inhibitory plastic synapses ¢;;; neurons in each motor assembly are interconnected through inhibitory

window, as follows:

E?/)é.a,‘
EO&,‘ ’

/(/)est = (5)

where 9! is the central value of neuron i firing with
a rate o in the assembly ¥, and 1, is the esti-
mated (decoded) value of the output [34]. Hence,
the decoder acts to estimate the value encoded by the
activity of the whole assembly, which makes it act asa
complement for the chosen encoding method.

Figure 1 depicts a schematic diagram of the
proposed SNN-based method. Firstly, the motor bab-
bling process initiates the training phase by pro-
viding the motor commands (joint velocity com-
mand wq) for the robot to move linearly in the joint
space through numerous random targets, as it is
formulated in:

€y

Wd = Ko 7> (6)
lleal

where ey = 604 — 0 is the error between the randomly
generated desired joint angles (64) and the current
joint angles (6).

This joint velocity command is scaled by the gain
kg > 0, which is also varied randomly within a cer-
tain range during the babbling, to generate richer
training data. During babbling motion, sensory infor-
mation and motor commands are fed into the net-
work to guide the modulation of the plastic synapses
between the input and output layers through STDP.
Sensory information is introduced from the proprio-
ception (# and 9) and the external sensor (the visual
velocity %), which are then encoded to be introduced
to the corresponding assemblies. The difference in
time of spikes generated in sensory and motor neu-
rons At = fpog — tpre controls the amount of change
in the synapses’ strength. After a sufficient number
of iterations (decided depending on the size of the




10P Publishing

Bioinspir. Biomim. 16 (2021) 036008

O Zahra et al

lpmin 7/"21 1/’ "/’Z "Z’iﬂ v

maxr

Figure 3. The encoder first converts the input value 1) by comparing it to the Gaussian curves of each neuron. Then, the output
of the encoder 7 is introduced to the layer I” to generate a set of spikes per iteration c by each neuron.

v oo i-1 i i+l N,

Figure4. (a) Asymmetric and (b) symmetric learning STDP rules. For asymmetric learning, S, and S;, are plotted at different
values while keeping 7, and 7, constant. For the symmetric one, 7, is plotted at different values while keeping 7, constant.

workspace, the learning rate, and desired precision
as explained in subsection 2.6) the robot is ready to
perform a sensor-guided motion task.

e
V4 = Ky, (7)
[lexll

where e, = x; — x denotes the feedback spatial error
and k, > 0 a variable gain that regulates the veloc-
ity by which the robot is driven towards the target x,
from the current position x. Finally, the motor com-
mand g is decoded from the spikes generated at the
output assemblies [/1:7 as follows:

ecmd = /(/)est . (8)

This value is then fed into the robot servo controller
to guide its motion towards x,; as shown in figure 2.

2.3. Neuron model

Among the models available for spiking neurons is the
Hodgkin and Huxley model that explains the mecha-
nism of triggering an action potential and its propaga-
tion [35]. The mathematical model is composed of a
set of nonlinear differential equations, which makes
it computationally intense. However, this model is

the most biologically plausible among all available
models.

Another model that is widely used is the leaky inte-
grate and fire model (LIF). In this model, the behavior
of a neuron is approximated as a simple RC circuit
with a low-pass filter and a switch with a threshold-
ing effect [36]. The RC circuit is first charged by an
input current, which makes the voltage at the capaci-
tor to increase until it reaches the threshold value. The
switch opens and lets a pulse (spike) to be generated;
the capacitor then starts to build up again. This model
is simple and has a low computational cost, however,
compared to Hodgkin—Huxley’s model, it is not very
biologically plausible.

In 2003, Izhikevich developed a model that can
reproduce the various firing patterns recorded by dif-
ferent neurons in different brain regions [37]. This
model is chosen for our study as it holds a bal-
ance between a reasonable computational cost while
preserving the biological plausibility. The model can
be described by the following set of differential
equations:

v =f(v,u) =0.040> + 50+ 140 —u+1 (9)
= g(v,u) = a(bv — u). (10)




10P Publishing

Bioinspir. Biomim. 16 (2021) 036008

O Zahra et al

membrane potential v(mV)
=N
(=)

recovery variable u

20 VL
0.0 5.0 10.0 15.0 20.0
T (steps)

(a)

Figure5. (a) Computational and (b) analytical analysis of a spiking neuron. In (a) an integrator neuron receives spikes from four
neurons to cross a threshold value and trigger a spike, while in (b) a phase portrait of a spiking neuron is plotted.

10— .
X
=X
v
X
OF X
—
-5 <
-10F T Se— - :
-15 —
220 . ” s " .
90 80 -70 -60 -50 -40

membrane potential v(mV)

(b)

After a spike occurs, the membrane potential is
reset as:

if v >30mV, then v<c¢, u<+ (u+d), (11)

where v is the membrane potential and u is the mem-
brane recovery variable as shown in figure 5(b). The
parameter a determines the time constant for recov-
ery, b determines the sensitivity to fluctuations below
the threshold value, ¢ gives the value of the membrane
potential after a spike is triggered, and d gives the
value of the recovery variable after a spike is triggered.
The term I represents the summation of the external
currents introduced.

2.4. Synaptic connections

Synapses are the connections that transmit signals
between two neurons. Let us denote by &; the
weight/strength of the synapse. The transmission acts
only in one direction, such that signals are carried
from the ith presynaptic to the jth postsynaptic neu-
ron. The information transmitted through synapses
is usually encoded in the form of spikes (or action
potentials). Different theories have been presented for
the way of encoding and decoding such information
in our brain [34]. The synaptic connections can either
be excitatory or inhibitory, and plastic or nonplastic.
Excitatory synapses are the connections that are more
likely to increase the activity of postsynaptic neurons
with the increase in the activity of the presynaptic
neuron, while inhibitory synapses decrease that likeli-
hood. The synapses connecting the input layer to the
output layer are plastic (which means that its strength
is subject to change). Let us denote by Agj[t] the
synapse’s change of strength at the time instance ¢,
which satisfies the following discrete update rule:

€ij[t+ 1] = €ij[t] + A&‘,‘j[t]. (12)

One of the first learning rules to update the synap-
tic weights is the Hebbian learning rule [38], whose

basic formulation is:
Ae’:‘,‘j = naia; (13)

where the scalar 7) is the learning rate, a; and a; are the
activities (or average firing rates) of the pre and post-
synaptic neurons, respectively. This rule strengthens
the connections between strongly correlated variables
and has been shown to perform principal component
analysis (PCA) [39]. However, this type of learning
does not take into consideration the time difference
between spikes, which is the main feature of SNNs.

Another learning rule that is more appealing from
a biological perspective is STDP, where potentiation
(increase) or depression (decrease) in the strength of
the connections is dependent upon the relative timing
of spikes that occur in presynaptic and postsynaptic
neurons [40]. STDP is considered as a temporal form
of Hebbian learning [41], e.g. in [42], it is shown that
it can perform ‘kernel spectral component analysis’,
which resembles PCA. This attribute makes it suitable
for mapping two spaces while successfully updating
the synaptic weights.

In the literature [43], two common patterns for
STDP are either as symmetric [44] or antisymmetric
[45], as depicted in figure 4. The antisymmetric model
can be formulated as:

At <0
At >0

—S, exp (—At/Ta)

(14)
\ exp (—At/Tb)

Ae’:‘,‘j =

where S, and S;, are coefficients that control the mag-
nitude of the synaptic depression and potentiation,
respectively, where 7, and 7, determine the time
window through which depression and potentiation
occur. The asymmetric STDP is thus suitable for a
learning process whenever the sequence of signals
matters, e.g., if a spike arrives from the presynaptic
neuron before the spike from a postsynaptic neuron
(which results in a positive value for At, and thus the
synapse’s weight is potentiated).




10P Publishing

Bioinspir. Biomim. 16 (2021) 036008

O Zahra et al

Algorithm 1. Network parameters tuning.

Input

n, m = No. of dimensions of spaces to be encoded
N; = No. of neurons to encode each dimension

Itr* = No. of iterations to build the map

Output
a, b, ¢, d = Neurons parameters

I = Minimum input to have continuous spikes
Ci, Cg = Maximum strength of inhibitory and excitatory connections, respectively
S = Learning rate for STDP based synaptic connections

Routine

1: Assign initial values for neuron parameters a, b, ¢, d

2: While ¢ > ey do

. Evaluate L(v*, u*) to check stability
: Obtain I* and hence Cg

: Set S for given Itr*

. Update values for a, b, ¢, d

10: Train the network

: Build the neuron model f{v, u) and g(v, u)
: Solve for nullclines at f(v, u) = 0 and g(v, u) =0
: Getv* and u* where f(v*, u*) = g(v*,u*) =0

11: Perform several target reachings to obtain value of £

12: end while

The symmetric learning model is the most appro-
priate in this case given the continuous firing at
both input and output layers. Furthermore, a sym-
metric STDP rule (with different reward modulated
versions) was reported to be observed in the hip-
pocampus and prefrontal cortex in several studies
[46—48] and was studied in [49]. The symmetric
STDP rule can be described by:

Ar\? A
Agj=8(1- <t> exp <t|> (15)
T1 T2

where S is a coefficient that controls the magnitude
of the synaptic change, the ratio between 7, and 7,
decides the time window through which potentia-
tion and depression occurs, and At is the difference
between the timing of spikes at post f,os and pre
fpre Synaptic neurons. In this study, we use S = 0.05,
71 = 20 ms and 7, = 18 ms. In this learning model,
the change in synapse’s weight is controlled by the
absolute value of At, but not the sign, i.e. the sequence
of firing. The chosen time window for the pre and
postsynaptic neurons for STDP is 30 ms, which means
as long as —30 < At < 30, it will still contribute to
the modification of the synaptic strength.

With the absence of the hidden layer(s), the non-
linearity in the neuronal units, as well as the features
of STDP, make it possible to learn the differential map.
Such approach is supported by previous studies (see
(20, 26]), as illustrated in section 4.

To perform the vision-guided motion task with
the proposed network, a careful setting of its param-
eters is needed, as explained in the next section.

2.5. Manual tuning of the network parameters

Tuning the various parameters of the neurons and
synapses is a difficult task. Some basic rules can be
used to guide the trial and error approach to choose

a set of appropriate values. For example, as u is the
membrane recovery variable, it is responsible for the
delivery of negative feedback to v, such that it resists
change of the value of v. The network’s parameters
a,b,c and d tune how v and u change and interact
together over time.

Figure 5(b) shows the phase portrait of the out-
put neurons, as it plots the recovery potential versus
the membrane potential. The two black curves rep-
resent the nullclines for both v and u, i.e. the line
along which partial derivative equals zero which sep-
arates the planes of variation of v and u. To obtain
these nullclines and analyze the system, equations (9)
and (10) are set equal to zero to obtain lines along
which there is no change in v and u, respectively. The
intersection of these nullclines forms attractor (sta-
ble) points or repeller (unstable) points [50]. From
the location of attractors and repellers, the stability
regions can be concluded. The equilibrium points
(v*, u*) are obtained by solving the equations of the
parabola and line obtained from equating f(v, u) and
g(v, u) together. The stability of these points is deter-
mined by the eigenvalues of the linearization matrix L:

( ) %(v*,u* 8—];(v*,u*)
L(v*,u*) =
_g * * _g * *
_Bv(v’u Bu(v’u)
_ [0.08v" +5 —1} (16)
| ab —a

As the v-nullcline shifts upward, the attractor and
repeller annihilate each other and merge into a saddle;
any further upward shift leads to the disappearance of
the saddle point.

As shown in algorithm 1, to use an SNN to
model a certain system, initial values should be
assigned for neuron parameters a,b,c,d based on




10P Publishing

Bioinspir. Biomim. 16 (2021) 036008

O Zahra et al

0.36 Cyj
—~ 0.34;
=
p—
o~
8
0.32
0.30 ' ' r r . v
-0.08 -0.04 0.0 0.04
L1(m)
Figure 6. A planar robot driven by the DMSNN, initially at x; reaching to a target at x; and at each time step both the actual
velocity (V) and the desired velocity vector () are calculated.

their role within the neuronal layer. In this work,
the motor neurons are modeled as integrator neu-
rons as it acts as a coincidence detector, such
that it triggers a spike by accumulating closely
timed signals as illustrated in figure 5(a). The ini-
tial values for the neuron parameters are a = 0.02,
b= —0.1,¢c = —55, and d = 6. The sensory neurons
are modeled as fast spiking neurons providing high
frequency spikes and initialized with a = 0.1, b =
0.2,c = —65,and d = 2. The above-mentioned initial
values are suggested in [51].

The parameters’ variation produces specific prop-
erties in the system, which can be used as a guide-
line to adjust the neuron’s firing pattern: (i) the value
of a controls the decay rate of u. (ii) The parame-
ter b controls the sensitivity of u to changes in the
membrane potential v below the threshold value. The
integrator neuron has a low value of b which is why
many spikes with a small time interval in between
are needed to trigger a spike. (iii) The parameter ¢
describes the value to which v is reset after firing.
Therefore, decreasing its value enables to create spikes
bursts since it makes the recovery to the original
threshold value faster. (iv) The parameter d describes
the reset in the value of u after a spike occurs, thus,
lowering it creates a higher firing frequency for the
same input current.

After setting the neuron parameters, the value for
I* and Cg can be concluded by analyzing the stabil-
ity at v* and u* such that a specific firing rate at the
output neurons is obtained for a certain input from
multiple input neurons. I* is even more critical to esti-
mate in our study, as selective disinhibition has to
be achieved and the neuron has to be maintained at
the verge of firing to avoid excessive firing [52]. This
ensures that only the correct motor neurons fire upon
excitation of the corresponding sensory neurons.

To obtain I*, we first equate g(v*, u*) = a(bv" —
u*) = 0, and solve for u* = bv". Then, substitute u*
into flv*,u*) =0 such that 0.04v*2 + (5 — b)v* +

140 + I = 0. The intersection of the u and v null-
clines at one point is when the neuron starts to give
continuous spikes, which means there is only one
solution for the quadratic equation. The equilibrium
points are given by v* = —(5—b)/(2 x 0.04) and

* = bv". The value of I" is finally computed by solv-
ing f(v*,u*) = 0. The parameter Cx must be cho-
sen such that at the end of the training phase the
selected firing behavior is still maintained. After set-
ting Cg, the spiking behavior is tested. The chosen
values for the motor neurons must not allow evoking
spikes at low spiking frequency from sensory neurons.
Note that increasing the frequency makes the learn-
ing process more susceptible to noise. Therefore, the
motor neuron parameters are to be modified instead.
The parameter b is then incremented slightly until a
satisfactory performance is obtained.

Depending on the size of the data set and the num-
ber of neurons in each assembly, the number of iter-
ations Itr* must be defined to build the map, which
in turn determines the value of the learning rate gain
S. If Itr* is relatively small, it will lead to a large S,
which often leads to instability and noise sensitivity.
A large Itr* results in an exhaustive (computationally
demanding) training process.

To quantify the accuracy of the computed differ-
ential map approximated by the network, we define
the following metric for the accuracy of estimation as
introduced in algorithm 1:

arccos( Ud - Tes >’ (17)
(| Ta ||| Tese

which is simply the difference between the desired
spatial velocity ¥4 and the spatial velocity v obtained
upon execution of the estimated motor command
écmd as shown in figure 6 (calculated from the decod-
ing equation (8)); the scalar N > 0 is the number of
points in the workspace over which the difference is
measured to obtain a mean error value. The tuning

1 N
S= N2

n=1




10P Publishing

Bioinspir. Biomim. 16 (2021) 036008

O Zahra et al

Initialize particles each with random initial

position p; and velocity ;

v

For each particle evaluate the value of £

>
»

Y

Pick the best position for each particle s;
and best global position among all

particles g;

v

Update 31 and (33

Update the position and velocity of each

particle

!

v

NO

For each particle evaluate the value of £

The maximum number o
iteration reached?

Yes

The target value of £ reached?

Figure7. A flowchart for the tuning of the parameters carried out using PSO.

process continues until the value of £ is below some
threshold value ey, indicating that the network’s per-
formance is acceptable.

2.6. Automated tuning of the network parameters

While the previous subsection introduces a guide-
line for a possible choice of good values for the net-
work parameters to have a good performance, the
high dimensional space for these parameters makes
it difficult to obtain optimum performance with only
trial and error. PSO is among the metaheuristics
used to look for optimum value for a defined search
space. While a global minimum is not guaranteed,
but with an appropriate objective/fitness function,
convergence towards a satisfying solution is achieved
upon reaching a threshold value. The PSO acts to
minimize the objective function, which is chosen as
equation (17), to give good candidate solutions that
minimize the mean error while reaching the tar-
gets. With a big enough population size and num-
ber of iterations/generations (relative to the number
of parameters to be optimized in the search space),
such an optimal solution/particle can be reached. To
narrow down the limits of the search space, the guide
from the previous subsection makes it easier to define

the range of values for the parameters to be optimized
to reduce the size of population and number of iter-
ations needed. In the PSO, as shown in figure 7, each
particle 7 in the population has a position p; and a
velocity v; while moving to search for an adequate
solution. For np is the number of parameters P in the
search space, p;, v; € R"7. Initially, both the position
and velocity of each particle are randomly initialized
within a predefined range. Then the fitness of each
member in the population is calculated. After each
iteration, p, is updated such that:

pi(t 4+ 1) = pi(t) + vi(t). (18)

Thus, the velocity v; is affected by the best local solu-
tion found by the particle s; € R"” and the best global
(found by the whole population) solution g; € R"7,
such that:

vi(t +1) = vi(t) + Bini (si(t) — pi(t))
+ B2r2(gi(t) — pi(1)) (19)
where 3, and 3, are the acceleration coefficients for

the best local and global solutions, respectively. Both
r and r, are random values ranging from 0 to 1.




10P Publishing

Bioinspir. Biomim. 16 (2021) 036008

O Zahra et al

Table 1. PSO search space.

Upper and lower search limits

P
L alTl thl Cm lel AS Am
Min 0.02 —0.4 =70 2 5 5

Max 0.5 0.25 =55 8 80 80

Thus, the velocity of the particle depends on its veloc-
ity in the previous iteration and its position from
the best local and global solutions. The two coeffi-
cients 3, and [, decrease linearly as the search pro-
ceeds. The maximum and minimum values of 5, and
B, are presented in section 4. The parameters cho-
sen for this study are the motor neurons parame-
ters (Am, bm,cm and dy,) and the amplitude of the
training phase input current to the sensory neurons
As and motor neurons A, defined in equation (4).
Thus, P = (am, b ¢m> dm»> As, Am) and np = 6 for
the studied case. The upper and lower limits for the
search space are defined in table 1 as L,;, and Lo,y 5
respectively. The maximum and minimum velocities
are set initially to be 15% of the searching range
and keep decreasing to reach only 5% by the last
iteration/generation.

3. Simulation results

3.1. Network layout selection

To test the proposed network and tuning method, the
summation of two variables (n; + 1, = ngm) 1S car-
ried out in different approaches. In figure 8(a), the
sum is estimated using two 1D-layers that encode two
variables (‘n;” and ‘n,’) connected through all plastic
connections to a 1D-layer encoding the result (‘44 )-
Random numbers are generated within a range and
introduced to the input layer, with their summation
introduced into the output layer. The network param-
eters are tuned as described in section 2.6, such that
during the training phase, firings in both input and
output layers allow the plastic connections to rep-
resent the desired summation function. After train-
ing, the sum is estimated from the decoded values at
the output layer. The approach gives a mean error of
7.5%.

Figure 8(b) shows another network layout used
to test our method. A 2D input layer is used instead
of two separate 1D layers. The difference from the
previous layout is that the neurons’ activity is esti-
mated by multiplying the normally distributed activ-
ity of both variables. The mean error for this layout is
around 2%. To build the proposed DMSNN, we use
the former approach. The rationale behind this choice
is elaborated in section 5.

3.2. 2DOF planar robot
To verify the effectiveness of our method for visual
servoing tasks, a simulation model of a 2DOF

planar robot with revolute joints is built. The differ-
ential kinematics of this system are:

—1, sin(612)

5(?2 ll COS(91) + lz COS(912) lz COS(912)

0,
i v

where I; denotes the link length, and 61, = 6, + 0,.
With the above definition of the Jacobian matrix, we
can derive the inverse differential mapping (based on
equation (2)), which is then used to generate train-
ing data for the SNN. During the training process,
normalized spatial velocity vectors are fed at ran-
dom joint angles to the corresponding assemblies in
the input layer along with the corresponding angular
velocities to the assemblies of the output layer. The
firing activity of the neurons is monitored, as shown
in figure 9, to make sure the network parameters are
correctly set to obtain the desired firing frequencies
and patterns of the neurons. For the accuracy of the
robot simulation, around the singular configurations,
a small value (107°) is added to the determinant of
the Jacobian matrix to avoid the unbounded values of
joint velocities.

After training, the network is tested by providing
a random target in Cartesian workspace x, for a ran-
dom initial position x;. By generating a normalized
spatial velocity vector U4 from the current position
x to reach the target, the estimated angular veloc-
ities (écmd) at each joint can be decoded from the
assemblies of the output layer.

To quantify the performance, we calculate the
minimum distance § from the current position to the
line segment X;x; as shown in figure 6. The target path
is a straight line, thus, the shortest distance at each
point is defined by the normal to X;x;. However, in
other cases, a more complex path may be required.
For a robot moving along the path C, divided into
N¢ points, given a reference target path €2, composed
of N points, the mean error emesn is calculated by
averaging the maximum deviation dmax Over Nisials
by applying algorithm 2. The training is done over
approximately 3000 iterations and tested over 5 times
repetition of servoing to 15 different targets (gener-
ated randomly in the workspace), to obtain the num-
ber of successful trials (in which the final end-effector
error e, is below the threshold value, that is chosen to

|:X1:| _ l:—ll sin(@l) — lz sin(@lz)

10



10P Publishing

Bioinspir. Biomim. 16 (2021) 036008

O Zahra et al

MJooceeeoo| 2jeeocococoo] "2 |500000

L[ 600000000

chosen approach.

(a) Separate encoding

Figure 8. A schematic of the two possible ways to perform summation of two variables (1, and #,). In this paper, (a) is the

000000
000000
000000
000000

nsum

—1600000000|

(b) Joint encoding

T F O I
0
1801 172
01
144 [
=
S ! l
=S 1084 M RINIMATIE BUINE IHDE ITUHE RIERH UINTIRUR REITURALIN RAITHMI
% I R MRIIN Ruin IIIIIII NN NIRUT W R UR NI RRinumw
72 [
36 1 - %2
0- : [

400 425 450 475

Figure 9. A spike raster plot of neurons in all assemblies in the network during the training phase.

500 525 550 575 600

t(s)

be 1 mm here) and the standard deviation of the max-
imum deviation 0,y for approaching chosen targets
is given by:

N,
o — \/anliﬂs (5max(n) - emean)z (21)
servoing — .
Nirials — 1

Figure 10(a) shows the plot of the percentage of
successful trials for the chosen parameters against
the number of training iterations. It can be con-
cluded that the learning, in that case, reaches a sta-
ble state after around 2700 iterations. Moreover, the
figure includes the plot of the network performance
with a slight change of the key parameters (in this
case parameter b for the output neurons as dis-
cussed earlier) with a noticeable degradation in the
learning ability and stability of the network. Thus, it
can be concluded the importance of fine-tuning the

network parameters. Additionally, figure 10(b) shows
the development of the performance of servoing at
different points in the workspace. It shall be noted that
the performance of the network is degraded in some
areas while the training proceeds, thanks to the gen-
eralization of the learning process. Thus, instead of
training in a local area, the whole defined workspace is
instead learnt. This means that initially specific exam-
ples are learnt and all neurons act to represent these
examples, but as the training proceeds, the represen-
tation includes a wider set of examples.

4. Experiments

4.1. Experimental setup

The proposed SNN is simulated using NeMo library,
a tool developed to simulate SNN [53, 54]. A UR3
robot is set with an Intel RealSense D415 camera in

11



Bioinspir. Biomim. 16 (2021) 036008

O Zahra et al

Algorithm 2. Calculating mean error.

1: fori = 1to Ny, do

2 e, =0

3 forj = 1to N¢do

4: ¢ =l C(G) — Q) ||

5: for k = 2to N, do

6: e = CG) —QG) ||
7 if e < ¢; then

8

: € = e
9: end if
10: end for
11: if ¢j > ¢; then
12: e = ej
13: end if
14: end for
15: Stack error . (1) < ¢;
16: end for
17 emean = Nlrlials Zi\]gfls 6max(”)

the setup as shown in figure 11(a). The D415 is an
RGB-D camera providing real-time color frames and
depth maps. Image registration is carried out by align-
ing the color and depth frames, then the end-effector
position can be measured through color filtering of
the manipulated object. For effective color filtering,
the image is blurred to remove high-frequency noise,
then the color frame is converted to HSV color space
for more robust performance independent of the light
intensity.

A mask, in the desired color range, is applied
to obtain a binary image, which is then subjected
to some morphology operators to remove the small
blobs. These operations allow to filter the image
and make it easier to discriminate the colored
end-effector as the biggest contour. Afterwards, the
moment of this contour is calculated such that M;; =
op(x1,%)x; " x, 7. Then, the centroid (p,, py) is cal-
culated in pixel units based on the moment such that
Py = Mo/ My and py = Mo/ Moo, see [55].

The location at the center of the object is then
converted to world coordinates by using the camera’s
intrinsic parameters [56]:
X3

F) Xy =

X3
(py Cy) F

x1 = (px — &) (22)
where p, and p, denote to the end-effector position in
pixels, x3 is the end-effector’s depth, ¢, and ¢, denote
the principal point and F is the focal length. The fol-
lowing first-order filter is used to remove noise from
these visual measurements:

se(t+ 1) = s¢(t) — A(se(t) — s(z + 1)) (23)
where s and s; are the variable before and after filter-
ing, respectively, and A > 0 denotes the filter’s gain.
Similarly, the position of the target is converted from
pixels (input given by mouse clicks on the camera dis-
play) to world coordinates based on the depth that
is defined and can be incremented or decremented
by button clicks. The target and end-effector posi-
tions are compared every iteration to update the error

e, and thus the desired end-effector velocity vq4 as
identified in equation (7).

To train the network, the robot is driven linearly in
the joint space between randomly generated angles.
UR script-based programming allows the execution
of such a motion in the joint space by defining only
the desired positions and speeds of joints. Data is
collected at a constant sampling rate of 25 Hz, then
filtered. As mentioned earlier, sy varied within the
range [0.03, 0.1] rad s}, and k, varies depending
on the maximum and minimum Cartesian veloci-
ties recorded during the babbling. Figure 12(c) shows
the positions obtained from the camera after filter-
ing and those obtained using the internal robot sen-
sors. Each neuron assembly is fed with the corre-
sponding data to let the plastic connections develop
to form the required differential mapping. Once the
training phase ends (dependent upon the number of
neurons and the size of the workspace), the strength
of the synaptic connections is kept constant. Ran-
dom targets are given across the robot workspace as
shown in figures 12(a) and (b). The current angular
position and the desired spatial velocity are updated
every 20 ms.

4.2. 3DOF planar robot
For this case, three joints are controlled to guide the
UR3 robot in planar motion, as shown in figure 13.
The network consists of five input assemblies (I and
F12) and three output assemblies (113). The network
parameters, as well as the number of neurons in each
assembly, are shown in tables 2 and 3, for manual and
PSO tuning, respectively. The parameters of the out-
put neurons chosen by the PSO are close to those of an
integrator neuron to validate the initial assumptions
as discussed in subsection 2.6. The three joints have
ranges of: [—180°, —90°], [—45°,0°] and [90°, 180°].
From the motor babbling data collected, the max-
imum and minimum values for both the spatial and
angular values are obtained. For each layer with N3
neurons, the central value ¢ encoded by each neu-
ron is assigned by dividing the range of each variable

12



10P Publishing

Bioinspir. Biomim. 16 (2021) 036008

O Zahra et al

1004
= 80
3\/
2 60 B
= E
] 401 RS
3
=
2 20|
0 ---A---A---A---Aj‘!‘-: x 0
400 800 1200 1600 2000 2400 2800 3200
Iterations
(a)
60 60 60
40 40 - 40 -
20 e T 20 R 20 II'I-;I
“2000 3000 2000 3000 2000 3000
60 60 60
40— _ 40 -~ 40 -
20 ST 200 | 200
2000 3000 2000 3000 2000 3000
= 60 60 60
& 40 oo 40 40
$§200 - - |20 L= | 20 T
NE - T -I=" =
2000 3000 2000 3000 2000 3000
60 60 60
401 - 40 40
200 _ 20 B ) 20 ) R
3000 ~ 3000 2000 3000 2000 3000
60/ 60 60
40 407-==_ 40 o
200 . 200 20 o
2000~ 3000 2000 ~ 3000 2000 3000
Iterations
(b)
Figure 10. (a) Plot of both the number of successful trials (in black), and the mean error (in red) during the control phase versus
the number of training iterations. The solid, dotted and dashed black lines are related to the output neurons with the parameter
b = 0.15,0.1, and 0.2, respectively. The mean error is only plotted for the case in which successful trials are above 80%. (b) Plot of
the mean error and standard deviation for each individual target approach (unsuccessful trials are discarded from calculations
and plot).

evenly over the whole layer. The update of the synaptic
strength is shown as heatmaps in figures 14(a) and (b)
for manually tuned parameters, and figures 15(a) and
(b) for parameters tuned using PSO. Each heatmap
depicts the relation between one assembly from the
sensory layer to one assembly from the motor layer,
where each pixel gives the strength of an excitatory
synapse connecting one sensory neuron to one motor
neuron. After running the simulation for 6000 itera-
tions, the strength of synapses between a motor layer
to the sensory layer is modulated to represent the
required differential map. The robot is then given 15

random points to reach with the end-effector through
a visual servoing process. The reaching is considered
successful if the end-effector position is less than 3
pixels away from the target in each coordinate. As
shown in figure 13, a target point is provided and
the robot automatically moves towards it by using the
decoded motion command 6 q. The speed of motion
varies by changing the value of xy, where in this case
kyx € [0.8,1.2] cm s~ . The distance between the end-
effector and the target is represented as the norm
llex]] = ||x — x4]|. Figure 16(a) shows the mean error
for the feedforward SNN (i.e., without interinhibitory

13



10P Publishing

Bioinspir. Biomim. 16 (2021) 036008

O Zahra et al

ration

(a) UR3 Planar configu-(b) UR3 Spatial configu-

Figure 11. The UR3 moves (a) planar motion while controlling 3DOFs and (b) spatial motion while controlling 4DOFs.

ration

connections), and both the manually and automat-
ically tuned DMSNNs, where the 3 networks could
successfully reach the 15 targets. However, it is evi-
dent that an improvement in performance, as well as a
great reduction in the number of neurons per assem-
bly, are achieved after applying the PSO and using
the obtained parameters. The improvement occurs as
a decrease in the mean error (defined as maximum
deviation from the reference path) and an increase in
the mean speed of the end-effector to approach the
reference velocity. Hence, less time is needed to reach
the target and faster servoing is achieved.

4.3. 4-DOF spatial robot
In this case, four joints are controlled to guide the UR3
robot as shown in figure 11(b).

The network consists of seven input assemblies
(I and [2), and four output assemblies (I1:4),
each assembly consisting of A; neurons. The network
parameters and the number of neurons in each layer
are shown in tables 2 and 3, for manual and PSO
tuning, respectively. It shall be noted that the man-
ually tuned neuron parameters for both cases of 3
and 4 DOFs are the same, as changing only the val-
ues of A, and A,, allows to sustain the controlled
firing and learning process. The four joints ranges
are: [—200°,—170°], [—75°, —45°],[90°,110°] and
[—200°, —160°]. The heatmaps depicting the update
of weights for manually tuned parameters at the 4000
and 9000 iterations are shown in figures 14(c) and (d),
respectively. Figures 15(c) and (d) depicts the update
of weights for parameters tuned using PSO at 4000
and 9000 iterations, respectively. It is clear from the
comparison of figures 14 and 15 that the synaptic
weights in the latter are distributed over the whole
map. Hence, the tuning of parameters using PSO leads
to a better contribution of all neurons in the network
to form the desired map, and thus reducing the num-
ber of required neurons. Similar to the previous setup,
randomly chosen 20 end-effector targets across the
workspace are given to the robot. The target reaching,

in this case, is considered successful when the end-
effector is less than 3 pixels away from the target in x
and y coordinates and 5 mm in depth (z coordinate).
The feedforward SNN reaches successfully to 16 out
of the 20 targets, while both the manually and auto-
matically tuned DMSNNs successfully reached the 20
targets with the mean error as shown in figure 16(a)
and the mean velocities as shown in figure 16(b). The
reference velocity in this case changes by changing «,
where k, € [0.2,0.5] cm s~! which is lower than that
of the 3DOF case to allow the network to average the
output over more iterations and negate the effect of
the increase in error due to the noisy depth readings.
Representative results for these 4-DOF visual servo-
ing tasks are depicted in figure 17 before and after
optimizing the network parameters via PSO. It shall
be noted that the ripples in the plot are due to the
noise in the data collected by the depth sensor, which
can be judged by comparison to the plots of velocities
based on the readings collected by the motor encoders
as shown in figure 12(d). The accompanying mul-
timedia video (https://stacks.iop.org/BB/16/036008/
mmedia) demonstrates the performance of our new
method with many experimental results.

5. Discussion

As shown in section 3.1, the accuracy of the summa-
tion of two numbers by the network in the case of
multiple one-dimensional arrays is lower than that
obtained in the case of a multi-dimensional array.
However, this result comes at the expense of the net-
work size where the 1D layers require only 2\ neu-
rons, for A/ is the number of neurons per layer, while
the 2D layer needs /2 neurons. This means that for an
O-dimensional case, N'© neurons would be needed.
However, note that the explicit use of visual feed-
back in our formulation provides a valuable rectify-
ing property to the network (i.e., it corrects for small
errors in an otherwise open-loop controller) while
demanding moderate computational power.

14



10P Publishing

Bioinspir. Biomim. 16 (2021) 036008

O Zahra et al

0.4

Robot Workspace

"0 100 200 300

400 500 600 700 800

— Camera Readings
— Robot Sensors

100 200 300

400 500 600 700 800
time (steps)

Wy
— Camera Readings|
— Robot Sensors

0 100 200 300

time (steps)

(d)

Figure 12. Plot of data collected for training the DMSNN for (a) 3DOFs and (b) 4DOFs, and velocities as measured from the
camera (after filtering) against that estimated by the internal sensors of the robot for (c) 3DOFs and (d) 4DOFs.

400 500 600 700 800

Moreover, in this study, the SNN is used to guide
the robot for visual servoing, where it requires fast
state updates, hence the proposed network is to be
used instead as it compromises between real-time
operation and sufficient accuracy. However, in the
case of accurate mapping of robot states and com-
mands, the second approach is to be used, or addi-
tional hidden layers are to be added to the network for

higher accuracy and better estimates. Another feature,
which is not evident from the summation test stud-
ied, is that SNN better approximates real-life oper-
ations where the values to be encoded/decoded are
continuous, i.e. with no discontinuity or jumps. For
the neurons in the network to evoke a spike, it needs
first to let the membrane potential build up over a
series of time steps. While incorporating the Gaussian

15



10P Publishing

Bioinspir. Biomim. 16 (2021) 036008 O Zahra et al

m w/o PSO
m with PSO

ez(m)

0 4 8 12 16 20 24 28
Time (s)

m w/o PSO
m with PSO

€eg(m)

0 16 32 48 64 80 96
Time (s)

(b)

Figure 13. The UR3 while performing planar motions to 2 different targets from different initial positions in (a) and (b) with the
norm of the error e, plotted during motion before and after optimizing the network parameters using PSO.

Table 2. Manual tuning network parameters.

Neuronal layers

a b c d A3/4 M/4
1 0.1 0.2 —65 2 20/15 68/136
[ 0.1 0.2 —65 2 20/15 68/136
1 0.02 0.15 —55 6 6/6 68/136

Synaptic connections

Param
DOF S T1 /’7'2 CI/CE Ttr*
3 (planar) 0.05 20/18 —4/4 6000
4 (spatial) 0.03 20/18 —5/5 9000

Table 3. PSO tuning network parameters.

a b c d A, Am N

_ 3D neuron parameters
1% 0.22 -0.25 —68 6.8 30 40 17

4D neuron parameters
1 0.11 —0.24 —68 7.8 27 50 27

activity, this leads to sharing excitation with neu-

operation and avoids sudden changes and jerky
rons in the neighborhood, and it becomes more likely

motions. So, despite the fact that in the asynchronous

for the adjacent neurons to be triggered in the next
cycles as well. As the adjacent neurons encode values
close to each other, this achieves a continuous smooth

SNN, as in our case, neurons that release a spike first
tend to spike again, the fine-tuning of the parameters
acts to facilitate more accurate approximations and

16



10P Publishing Bioinspir. Biomim. 16 (2021) 036008 O Zahra et al

LR

UHR]

HiK

A |

9 4 M

Figure 14. Heatmap of the weights update process for the 3DOF case of study at (a) 3000 and (b) 6000 iterations, and for 4DOF
case at (c) 4000 and (d) 9000 iterations with manually tuned parameters. The dark blue color corresponds to zero weight while
the dark red color corresponds to the maximum weight.

17



10P Publishing Bioinspir. Biomim. 16 (2021) 036008 O Zahra et al

Figure 15. Heatmap of the weights update process for the 3DOF case of study at (a) 3000 and (b) 6000 iterations, and for 4DOF
case at (c) 4000 and (d) 9000 iterations with parameters tuned via PSO.

18



10P Publishing

Bioinspir. Biomim. 16 (2021) 036008

O Zahra et al

B Feedforward SNN
B DMSNN
54 DMSNN after PSO

Mean Error (mm)

3D

4D

0.7

Mean Speed/Desired Speed (mm)

DOF

(b)

Figure 16. (a) The mean error and (b) mean speed for reaching several random targets in both 3 and 4 DOFs cases.

B Feedforward SNN
B DMSNN
DMSNN after PSO

the activity of the neighboring neurons acts to correct
the estimations during the servoing process.

The proposed network relies on biologically plau-
sible models of neurons and synapses, which are more
complex compared to other relatively simpler models,
to both preserve features of the biological nervous sys-
tem as much as possible and serve as a future building
block for simulating the whole hierarchy of the bio-
logical motor system. An example of this is the simple
Izhikevich neuron model [37] used in the proposed
network, instead of the commonly used LIF [36]. This
work also exploits the potential of such SNN, fol-
lowing some procedures for fine-tuning of the net-
work parameters as described in subsection 2.6, where
only two layers (input and output) and a low number
of neurons are needed to develop a differential map
for multi-DOF robots. Additionally, the noisy data
is well-handled thanks to the inhibition that occurs
for the distal firing of pre and postsynaptic neurons,
which weakens the synapses connecting uncorrelated
neurons, aside from the inter-inhibitory connections
that inhibit distal neurons to avoid undesired firing.

The developed network can then be compared to
the work from [25], where an SNN is used to build a
map for the static transformation of coordinates for a
simulated 2DOF robot (let us denote it as CTSNN),
and the work from [57], where an SNN modeling
the sensorimotor cortex is used to guide a simu-
lated 2DOF robot in a reaching task (and denoted as
SMCSNN). Both these studies target to build a map
that can be used to guide a simulated 2DOF robot
which is similar to the studied case thus providing a
valid comparison. Table 4 highlights the differences
in terms of the number of training iterations (Itr*)
and time (T (s)), the network size (V) and the final
error ey.

It can be concluded that both the simulation time
and the real time required for training and running
the network is less for the proposed network, thanks
to the fine-tuning of the network parameters and
maximizing the benefit from the spiking nature of the
network.

Following the proposed tuning method, in
the case of the spatial configuration, each neuron

19



I0P Publishing

Bioinspir. Biomim. 16 (2021) 036008

O Zahra et al

0I5 m w/o PSO
E o1 m with PSO
Ny
0.05
04
0 10 20 30 40 30 60
Time (s)

m w/o PSO

motion before and after optimizing the network parameters using PSO.

E 01 m with PSO
8
©0.05
0 25 50 75 100 125 150
Time (s)
(b)

Figure 17. The UR3 while performing spatial motions in (a) and (b) with the norm of the error in the 3 axes e, plotted during

Table 4. Networks comparison.

Param
Net Ttr? T'(s) ey Noet
CTSNN ~4000 800 NA 2000
SMCSNN 200ep 3000 ~] mm 704
DMSNN 3000 30 <1 mm 216

*The number of iterations for CTSNN is estimated based on 8000 s train-
ing divided into 1600 time steps (each time step 0.125 ms) for each stimulus
introduced. The number of training steps is not mentioned for the SMCSNN,
instead, the number of epochs is mentioned (which in this case is the motion
from one starting point to a target point) and each epoch takes around 15 s.
Each iteration in the DMSNN is 80 ms of simulation time (which is only 10 ms
of real time), through which a certain stimulus is introduced to the network.

assembly consists of around 136 neurons and 27
neurons only after tuning the parameters using PSO,
compared to around 1000 neurons in [26]. Moreover,
the study in [26] suggests to divide the input into
separate bins to improve the learning, but both
the formulation and the explanation of how this is
achieved is lacking, and the method to set and tune
the network parameters is not mentioned.

In [20] each assembly is constructed of around
100 neurons only, however, a hidden layer is needed

which increases the size of the network and com-
plexity of the tuning process. Moreover, the robot in
this work needs to approach only 100 points, and the
data recorded while moving to these target points is
sufficient for the training process, compared to 6426
target points in [23]. The robot succeeds in all tri-
als to reach the destined targets through visual ser-
voing with the reduction in the mean error through
the modified architecture and the automatically tuned
network parameters.

20



10P Publishing

Bioinspir. Biomim. 16 (2021) 036008

The time required to reach the target varies
depending on the distance from the current position
and the richness of data trials available along the path
between the current and target pose. This can be seen
in the two examples in figure 13, where in figure 13(a)
the robot takes less time to cover a bigger distance
compared to figure 13(b). This can be explained by
having the training data collected from motor bab-
bling in joint space with more examples of the robot
moving in waving-like trajectories and less abundant
data for linear motion in task space. Similarly, for the
trial in figure 17(a), less time is needed compared to
the trial in figure 17(b) as the target in the latter is
close to the boundary of the studied section of the
workspace which has less training examples. In these
previous examples, the DMSNN-based servoing has
less deviation from the reference path, and thus takes
less time after employing the parameters generated by
the PSO. Richer data collected from motions in both
joint and task space can be used in a future study
to role out the effect of varying the data on differ-
ent motion types, and the possibility of emerging of
motion primitives from such behavior.

It can be noticed from figures 12(c) and (d), the
training data is filtered using only first-order filter and
contains more noise in case of the spatial motion, due
to the noise in depth readings, however, the DMSNN
is still able to approximate the differential relationship
and build the desired map. This can be justified by the
depression in the strength of uncorrelated neurons
due to the chosen STDP rule.

6. Conclusions

Utilizing both the proposed architecture and the tun-
ing guideline, the DMSNN provides a way to build
a differential map to drive robots with many DOFs
through multimodal servoing tasks. The network is
featured by real-time operation and a small amount
of data, compared to similar methods in the litera-
ture, is needed for training. The current limitations of
this method are related to the limited resolution of the
network output. Future work will focus on improving
the output resolution, as well as deriving a mathe-
matical formula to conclude the optimal parameters
for neuron firing and STDP learning. We also plan to
use this method for conducting vision-guided shape
control tasks with deformable objects, as in [58], and
apply a cerebellar controller to enhance the perfor-
mance and reduce the deviation from the path, as
in [22].

Acknowledgments

This research work is supported in part by the
Research Grants Council (RGC) of Hong Kong
under Grant No. 14203917, in part by PROCORE-
France/Hong Kong Joint Research Scheme sponsored

O Zahra et al

by the RGC and the Consulate General of France in
Hong Kong under Grant F-PolyU503/18, in part by
the Chinese National Engineering Research Centre
for Steel Construction (Hong Kong Branch) at PolyU
under Grant BBVS, in part by the Key-Area Research
and Development Program of Guangdong Province
2020 under project 76 and in part by The Hong Kong
Polytechnic University under Grant G-YBYT and 4-
Z7ZH].

Data availability statement

The data generated and/or analyzed during the cur-
rent study are not publicly available for legal/ethical
reasons but are available from the corresponding
author on reasonable request.

ORCID iDs

Omar Zahra
6480

Silvia Tolu
David Navarro-Alarcon
0002-3426-6638

https://orcid.org/0000-0003- 1644-

https://orcid.org/0000-0003-1825-8440
https://orcid.org/0000-

References

[1] Navarro-Alarcon D, Cherubini A and Li X 2019 On Model
Adaptation for Sensorimotor Control of Robots, in 2019
Chinese Control Conf. (CCC) (IEEE) pp 2548-52

[2] Fagard J, Esseily R, Jacquey L, O’Regan K and Somogyi E
2018 Fetal origin of sensorimotor behavior Front. Neurorob.
1223

[3] Aoki T, Nakamura T and Nagai T 2016 Learning of motor
control from motor babbling IFAC-PapersOnLine 49

154-8

[4] Xiong X, Worgotter F and Manoonpong P 2015 Adaptive
and energy efficient walking in a hexapod robot under
neuromechanical control and sensorimotor learning IEEE
Trans. Cybern. 46 252134

[5] Pinto L and Gupta A 2016 Supersizing self-supervision:
learning to grasp from 50K tries and 700 robot hours 2016
IEEE Int. Conf. On Robotics and Automation (ICRA) (IEEE)
pp 3406-13

[6] Pierson H A and Gashler M S 2017 Deep learning in
robotics: a review of recent research Adv. Robot. 31 821-35

[7] Arulkumaran K, Deisenroth M P, Brundage M and Bharath
A A 2017 Deep reinforcement learning: a brief survey IEEE
Signal Process. Mag. 34 2638

[8] McCulloch W S and Pitts W 1943 A logical calculus of the
ideas immanent in nervous activity Bull. Math. Biophys. 5
115-33

[9] Widrow B and Stearns S D 1985 Adaptive Signal Processing
(Englewood Cliffs, NJ: Prentice-Hall)

[10] Maass W 1997 Networks of spiking neurons: the third
generation of neural network models Neural Netw. 10
1659-71

[11] Chittka L and Niven J 2009 Are bigger brains better? Curr.
Biol. 19 R995-R1008

[12] Makino H, Hwang E J, Hedrick N G and Komiyama T 2016
Circuit mechanisms of sensorimotor learning Neuron 92
705-21

[13] Thorpe S, Fize D and Marlot C 1996 Speed of processing in
the human visual system Nature 381 5202

21



10P Publishing

Bioinspir. Biomim. 16 (2021) 036008

(14]

(15]

(16]

(17]

(18]
(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]
(29]

(30]

(31]

(32]

(33]

(34]

(35]

Wang G and Pavel M 2005 A spiking neuron representation
of auditory signals Proc. of the Int. Joint Conf. on Neural
Networks 2005 vol 1 (IEEE) pp 416-21

Krichmar J L 2018 Neurorobotics—a thriving community
and a promising pathway toward intelligent cognitive robots
Front. Neurorob. 12 42

Luque N R, Garrido J A, Carrillo R R, Tolu S and Ros E 2011
Adaptive cerebellar spiking model embedded in the control
loop: context switching and robustness against noise Int. J.
Neural Syst. 21 385-401

Ojeda I B, Tolu S and Lund H H 2017 A scalable
neuro-inspired robot controller integrating a machine
learning algorithm and a spiking cerebellar-like network
Conf. on Biomimetic and Biohybrid Systems (Berlin:
Springer) pp 375-86

Furber S 2016 Large-scale neuromorphic computing
systems J. Neural Eng. 13 051001

Schéner G 2016 Dynamic Thinking (A Primer on Dynamic
Field Theory) (Oxford: Oxford University Press)

Tieck ] C V, Donat H, Kaiser J, Peric I, Ulbrich S, Roennau
A, Zollner M and Dillmann R 2017 Towards grasping with
spiking neural networks for anthropomorphic robot hands
Int. Conf. On Artificial Neural Networks (Berlin: Springer)
pp 43-51

Bing Z, Meschede C, Rohrbein F, Huang K and Knoll A C
2018 A survey of robotics control based on
learning-inspired spiking neural networks Front. Neurorob.
1235

Corchado C, Antonietti A, Capolei M C, Casellato C and
Tolu S 2019 Integration of paired spiking cerebellar models
for voluntary movement adaptation in a closed-loop
neuro-robotic experiment. A simulation study 2019 IEEE
Int. Conf. On Cyborg and Bionic Systems (IEEE)

Tieck J CV, Steffen L, Kaiser J, Roennau A and Dillmann R
2018 Controlling a robot arm for target reaching without
planning using spiking neurons 2018 IEEE 17th Int. Conf.
On Cognitive Informatics & Cognitive Computing
(ICCIxCC) (IEEE) pp 111-6

Srinivasa N and Cho Y 2012 Self-organizing spiking neural
model for learning fault-tolerant spatio-motor
transformations IEEE Trans. Neural Netw. Learning Syst. 23
1526-38

Wu Q, McGinnity T M, Maguire L, Belatreche A and
Glackin B 2008 2d co-ordinate transformation based on a
spike timing-dependent plasticity learning mechanism
Neural Netw. 21 131827

Bouganis A and Shanahan M 2010 Training a spiking neural
network to control a 4-DoF robotic arm based on spike
timing-dependent plasticity The 2010 Int. Joint Conf. On
Neural Networks (IJCNN) (IEEE) pp 1-8

Wolpert D M and Kawato M 1998 Multiple paired forward
and inverse models for motor control Neural Netw. 11
1317-29

Blakemore S-J, Wolpert D and Frith C 2000 Why can’t you
tickle yourself? Neuroreport 11 R11-6

Maravita A and Iriki A 2004 Tools for the body (schema)
Trends Cognit. Sci. 8 79—86

Abadia I, Naveros F, Garrido J A, Ros E and Luque N R 2019
On robot compliance: a cerebellar control approach IEEE
Trans. Cybern. 1-14

Vannucci L, Falotico E, Tolu S, Cacucciolo V, Dario P, Lund
H H and Laschi C 2017 A comprehensive gaze stabilization
controller based on cerebellar internal models Bioinspir.
Biomim. 12 065001

Chaumette F and Hutchinson S 2006 Visual servo control. I.
Basic approaches IEEE Robot. Autom. Mag. 13 82-90
Kalaska J F 2009 From intention to action: motor cortex and
the control of reaching movements Progress in Motor
Control (Berlin: Springer) pp 139-78

Amari S et al 2003 The Handbook of Brain Theory and
Neural Networks (Cambridge, MA: MIT Press)

Hodgkin A L and Huxley A F 1952 A quantitative
description of membrane current and its application to

(36]

(37]
(38]
(39]

(40]

(41]

(42]

(43]

(44]

(45]

(46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

(54]

(55]
(56]

(57]

(58]

O Zahra et al

conduction and excitation in nerve J. Physiol. 117

500-44

Abbott L F 1999 Lapicque’s introduction of the
integrate-and-fire model neuron (1907) Brain Res. Bull. 50
303-4

Izhikevich E M 2003 Simple model of spiking neurons IEEE
Trans. Neural Netw. 14 1569—72

Hebb D 2002 The Organization of Behavior 1949 vol 2 (New
York: Wiely) p 8

Oja E 1982 Simplified neuron model as a principal
component analyzer J. Math. Biol. 15 267-73

Buonomano D and Carvalho T 2009
Spike-timing-dependent plasticity (STDP) Encyclopedia of
Neuroscience ed L R Squire (New York: Academic) pp 265-8
Caporale N and Dan Y 2008 Spike timing-dependent
plasticity: a Hebbian learning rule Annu. Rev. Neurosci. 31
25-46

Gilson M, Fukai T and Burkitt A N 2012 Spectral analysis of
input spike trains by spike-timing-dependent plasticity
PLoS Comput. Biol. 8 ¢1002584

Cutsuridis V, Cobb S and Graham B P 2008 A Ca**
dynamics model of the STDP symmetry-to-asymmetry
transition in the Cal pyramidal cell of the hippocampus Int.
Conf. On Artificial Neural Networks (Berlin: Springer) pp
627-35

Woodin M A, Ganguly K and Poo M-m 2003 Coincident
pre- and postsynaptic activity modifies GABAergic synapses
by postsynaptic changes in Cl-transporter activity Neuron
39 807-20

Buchanan K and Mellor J 2010 The activity requirements
for spike timing-dependent plasticity in the hippocampus
Front. Synaptic Neurosci. 2 11

Ruan H, Saur T and Yao W-D 2014 Dopamine-enabled
anti-Hebbian timing-dependent plasticity in prefrontal
circuitry Front. Neural Circ. 8 38

Zhang J-C, Lau P-M and Bi G-Q 2009 Gain in sensitivity
and loss in temporal contrast of STDP by dopaminergic
modulation at hippocampal synapses Proc. Natl Acad. Sci.
106 13028-33

Brzosko Z, Schultz W and Paulsen O 2015 Retroactive
modulation of spike timing-dependent plasticity by
dopamine Elife 4 €09685

Hao Y, Huang X, Dong M and Xu B 2020 A biologically
plausible supervised learning method for spiking neural
networks using the symmetric STDP rule Neural Netw. 121
387-95

Izhikevich E M and Moehlis ] 2008 Dynamical systems in
neuroscience: The geometry of excitability and bursting
SIAM Rev. 50 397

Izhikevich E M 2004 Which model to use for cortical
spiking neurons? IEEE Trans. Neural Netw. 15 1063—70
Sridharan D and Knudsen E 12015 Selective disinhibition: a
unified neural mechanism for predictive and post hoc
attentional selection Vis. Res. 116 194-209

Fidjeland A K, Roesch E B, Shanahan M P and Luk W 2009
Nemo: a platform for neural modelling of spiking neurons
using GPUs 2009 20th IEEE Int. Conf. On Application-specific
Systems, Architectures and Processors (IEEE) pp 137—-44
Gamez D, Fidjeland A K and Lazdins E 2012 iSpike: a
spiking neural interface for the iCub robot Bioinspir.
Biomim. 7 025008

Hu M-K 1962 Visual pattern recognition by moment
invariants IRE Trans. Inf. Theory 8 179-87

Sturm P 2014 Pinhole Camera Model (Berlin: Springer)

pp 610-3

Neymotin S A, Chadderdon G L, Kerr C C, Francis J T and
Lytton W W 2013 Reinforcement learning of two-joint
virtual arm reaching in a computer model of sensorimotor
cortex Neural Comput. 25 326393

Navarro-Alarcon D and Liu Y-H 2018 Fourier-based shape
servoing: a new feedback method to actively deform soft
objects into desired 2D image shapes IEEE Trans. Robot. 34
272-9

22



