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Keypoint-Based Planar Bimanual Shaping of
Deformable Linear Objects Under Environmental
Constraints With Hierarchical Action Framework
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Abstract—This letter addresses the problem of contact-based
manipulation of deformable linear objects (DLOs) towards desired
shapes with a dual-arm robotic system. To alleviate the burden of
high-dimensional continuous state-action spaces, we model DLOs
as kinematic multibody systems via our proposed keypoint en-
coding network. This novel encoding is trained on a synthetic
labeled image dataset without requiring any manual annotations
and can be directly transferred to real manipulation scenarios.Our
goal-conditioned policy efficiently rearranges the configuration of
the DLO based on the keypoints. The proposed hierarchical action
framework tackles the manipulation problem in a coarse-to-fine
manner (with high-level task planning and low-level motion con-
trol) by leveraging two action primitives. The identification of
deformation properties is bypassed since the algorithm replans its
motion after each bimanual execution. The conducted experimen-
tal results reveal that our method achieves high performance in
state representation and shaping manipulation of the DLO under
environmental constraints.

Index Terms—Action planning, deformable linear objects,
hierarchical framework, robot manipulation, synthetic learning.

I. INTRODUCTION

D EFORMABLE object manipulation has many promising
applications in growing fields, such as flexible cable ar-

rangement [1], clothes folding [2], and surgical robots [3].
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Among them, the manipulation of deformable linear objects
(DLOs) attracts much attraction [4].

Compared with rigid objects, manipulating deformable ob-
jects is much more challenging due to their complex physical
dynamics and multiple degrees of freedom. Although great
progress has been recently achieved in deformable object ma-
nipulation (e.g. [5]–[7]), shaping DLOs under environmental
constraints remains an open problem. Humans are good at using
external assistance (contacts) to manipulate complex objects
(underactuated systems) with high dexterity, whereas it is diffi-
cult for robots. Our insight is to endow robots with this skill
similar to humans’ behaviors: 1) perception with kinematic
configurations instead of numerical coefficients of mathematical
model and 2) hierarchical action in a coarse-to-fine manner.
This letter aims to develop a complete algorithm (including
perception and action) to tackle the task of contact-based shaping
of DLOs with bimanual manipulation.

Perception: Many researchers have worked on the represen-
tation of DLOs in vision [8]. [1], [9] develop Fourier-based
descriptors; however, they require high computation cost during
online contour fitting. Data-driven based shape analysis has
gained popularity in feature extraction [10]. [11] proposes an
antoencoder-based network for cloth manipulation, which needs
tremendous data collection. Training on synthetic datasets is
useful for avoiding time-consuming data collection [12]. [13]
simulates 2D fabrics on a mesh grid-connected by springs,
requiring high similarity between the simulation and the en-
vironment. [14] forms a rope through twisting meshes along a
Bézier curve. However, this model lacks a flexible mathematical
representation of the continuous curve and has a strong hypoth-
esis about a node on the end to break out the symmetry. [15]
encodes a rope with control points in a self-supervised manner;
however, it still needs a real dataset for perception fine-tuning.

Action: Deformable object manipulation is generally divided
into two aspects, consisting of model-based and model-free ap-
proaches. [16] proves the configuration space of the quasi-static
manipulation on a elastic rod is a manifold, while the assump-
tion is quite restrictive. With the pregrasping hypothesis, [1],
[17] approximate the local deformation model with a linear
Jacobian matrix, while global convergence is not guaranteed.
Formulating the task as a multistep pick-and-place manipulation
problem, [14], [15] conduct the tasks with single-arm policy
while real data collection is required for sim-to-real transferring
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Fig. 1. The overview of the keypoint-based bimanual manipulation for shaping
DLOs with contacts. Given the goal I∗, the DLO manipulation is formulated as
a goal-directed task from the initial configuration I[0]. At each time step t, the
perception network encodes the state of the DLO S[t] as sequential keypoints
P [t] to form a kinematic model. The hierarchical action framework takes the
currentP [t] and the goalP ∗ keypoints as input and outputs the action sequences

(T [t]
L , T [t]

R ). The whole algorithm replans based on the new observation after
the execution of the robots and iterates until reaching the desired goal.

or human visual demonstration. [18] assembles DLOs for spec-
ified fixtures with dual robots, yet contacts are not taken into
consideration. [19] presents a framework interleaving predic-
tion, planning and control for deformable object manipulation.
However, they purely consider avoiding the obstacles instead of
making use of contacts.

The method in [20] exploits environmental contacts for ma-
nipulation of DLOs, which is achieved with some customized
mechanical grippers and the assumption of pregrasping. In
this work, we contribute to the manipulation of DLOs from
arbitrary configurations to the desired states under environ-
mental constraints provided by stable fixtures. This scenario
is a typical hybrid system whose continuous dynamics within
discrete modes switches correspond to making or breaking of
contacts [21]. To deal with this issue, the shape of the DLO is
characterized by a sequence of ordered keypoints with percep-
tion encoding, narrowing the state-action search space robustly
and efficiently. Based on the explicit sequential keypoints, we
design a hierarchical action framework for this challenging task
without requiring any manual data collection and annotations.
The original contributions of this work are as follows:
� A novel data-driven keypoint encoding approach for DLOs

whose network is trained on a synthetic dataset.
� A hierarchical action framework for contact-based shaping

DLOs in a coarse-to-fine manner with two primitives.
� An experimental study to validate our solution for DLOs

shaping under real environmental constraints.
The remainder of this letter is organized as follows. Section II

states the task’s formulation. Section III explains the perception.
Section IV reports the hierarchical action framework. Section V
reports the results and Section VI gives the conclusions.

II. PROBLEM FORMULATION

The architecture of our vision-based manipulation system is
depicted in Fig. 1. Given a goal observation I∗, our task is to
manipulate the DLO from an initial configuration I [0] to match
it. Following assumptions are made about the task: 1) the state of
the DLO S[t] can be extracted from the raw observation I [t] with
a color filter; 2) the information (size, sequence, and position) of
the circular fixturesC = {c1, . . . , ck, . . . , cK} are known; 3) the

Fig. 2. Synthetic pipeline of our automatically annotated dataset. Multiple
curve segments translate for end-to-end connection. This raw data undergoes
sampling and stacking for labels and inputs for the dataset. At last, we render
the curve as a binary image S[t] and its corresponding keypoints P [t].

DLO achieves and keeps the goal state S∗ only if the completion
of necessary contacts with all fixtures.

Formulating deformable object manipulation as a multistep
decision-making process, our aim is to obtain a long-horizon se-
ries of action sequences A = (A[1], . . . , A[t], . . . , A[H]) within
H steps, such that the last state S[H+1] reaches the goal state S∗.
To deal with this task, we adopt planar bimanual manipulation to
shape DLOs on a table. The action sequences A[t] at each time
step t is divided into dual arms in the robotic system defined
as A[t] = (T [t]

L , T [t]
R ). The action variety of the individual se-

quences T [t] contains motion, grasping, and releasing. The state
S[t] of the DLO is depicted as S[t] = {s[t]1 , . . . , s

[t]
i , . . . , s

[t]
N },

where N is the number of the positive values in the binary
masked representation S[t].

Based on the kinematic multibody model [22], our percep-
tion representation model G(·) maps the sensory image S[t] to
sequential keypointsP [t] = {p[t]1 , . . . , p

[t]
j , . . . , p

[t]
M} (M � N ),

which is mathematically described as P [t] = G(S[t]). This rep-
resentation P [t] allows us to narrow down the search space and
obtain an informative descriptor for bimanual manipulation. We
consider the end of the DLO close to the left robot as the first
keypoint in the encoding. According to this description, our
hierarchical framework consists of task planning and motion
control. Taking P [t] and P ∗ = G(S∗) as input, the high-level
model plans a local sub-goal, while the low-level model controls
motion to achieve it.

III. PERCEPTION

In this section, we render an annotated synthetic image dataset
(Section III-A) to train the keypoint encoding P [t] = G(S[t])
with supervised learning and fine-tune the output of the network
through the geometric constraints (Section III-B).

A. Synthetic Dataset Generation

Current methods of synthetic DLOs (e.g. [14], [23]) are based
on cylindrical meshes, which need great effort and are still
far from the real situations. Our synthetic method describes
DLOs with a continuous curve and renders it to a camera
view since it allows us to 1) define customized sequential
keypoints as labels automatically and 2) simulate the raw vi-
sual input in the real environment with high similarity. We
follow the truncated Fourier series model in [9] to describe a
contour. It is worth highlighting that the goal here is not to
fit the existing curves, but rather to generate realistic DLOs
with a known mathematical model to access the sequential
keypoints. Illustrated in Fig. 2, we render a DLO consisting
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of several curve segments D = (D1, · · ·Dq, · · ·DQ), where
Dq = {(dq1x, d

q
1y), . . . , (d

q
ex, d

q
ey), . . . , (d

q
Ex, d

q
Ey)} is extended

along the X-axis (dq(e+1)x > dqex). The Fourier-based model C(·)
maps the value in X-axis to Y-axis, denoted as dqey = C(dqex).
The detailed mathematical model is:

dqey = C(dqex) =
R∑

r=1

[
ζ1r cos(ζ

2
rd

q
ex) + ζ3r sin(ζ

4
rd

q
ex)

]
(1)

where ζ1r , ζ
2
r , ζ

3
r , ζ4r are coefficients and R is the number of

harmonics under consideration. For the adjacent line segments
(Dq, Dq+1), we translate the first point (dq+1

1x , dq+1
1y ) of Dq+1

to the last point (dqEx, d
q
Ey) of Dq , achieving a continuous

end-to-end connection. After the connection, we obtain a contin-
uous curve D = (o1, . . . , om, · · · ) whose elements are ordered
from one end to another end. We define our customized M
keypoints fromD in two steps. Firstly,M candidates are sampled
uniformly at regular intervals along the length of the rope. Since
the points with high curvature are more representative to describe
the contour of the DLO, we prefer to consider them as keypoints.
We quantify the curvature of a point om with the angle αm

between its surrounding vectors, defined as:

αm = 〈< f ′−(om), f ′+(om)〉 > (2)

where f ′−(om) = �om − �om−1 and f ′+(om) = �om+1 − �om.

Here, 〈< �a,�b〉 > denotes the function about computing the angle
between two vectors (�a,�b). We substitute the points whose
angles αm are larger than a threshold τu for their nearest
candidates in the coarse sampling. In addition, we stack D
along Y-axis to simulate the cross-section of the DLO S[t].
Next, both the sampled keypoints and the stacked layers enter
into spatial transformation for data augmentation and camera
view rendering for image processing. Spatial transformation,
including translation and rotation, is significant for balancing
the distribution of samples. Camera view rendering consists of
resizing the curve into the region of interest and reorder of the
points into an image format. Since we adopt a binary image
S[t] to represent the DLO, the pixel at S(u, v) is positive if any
element locates within its surroundings:

S(u, v) =

{
1, ∃om ∈ I(u, v)
0, otherwise

(3)

where om ∈ I(u, v)⇐⇒ {u− ε < omx < u+ ε} ∩ {v − ε <
omy < v + ε}, u and v are the horizontal and vertical position
of the pixel in the image, and ε is the half of the size of a pixel.
For the labeled keypoints, we transform them from Cartesian
frame to image frame, represented as pj(uj , vj) in sequence. In
conclusion, we render binary images about DLOs S[t] and their
corresponding keypoints P [t].

B. Keypoint Detection

We design a neural network for the mapping G(·). More
details about the structure and the training process are discussed
in Section V.

While the network is generalizable across different shapes of
DLOs, errors are still unavoidable. As illustrated in Fig. 3, some
outputs are visually located on the area of the background, which
conflicts with the prior knowledge that the keypoints locate

Fig. 3. Illustration of the geometric fine-tuning. The point locating on the
background area is revised along the direction vertical to its tangent.

Fig. 4. Flow chart of the proposed hierarchical action framework.

within the DLO. Hence, we implement a fine-tuning according
to this geometric constraint. For an output pj = (uj , vj) that
fails, namely S[t](uj , vj) = 0, we utilize the adjacent pixels
(pj−1, pj+1) to correct it, which is divided into two cases: (1)
the ends are adjusted to the nearest pixels in the area of DLO
and (2) the intermediate keypoints are revised through searching
along the direction vertical to its tangent space δpj :

find si(ui, vi)

s.t. S[t](ui, vi) = 1−−→
sipj · δpj = 0

(4)

where its tangent space δpj is defined as δpj = �pj+1 −�pj−1.
Notably, we denoteP [t] as the fine-tuning result of the raw output

P
[t]

.

IV. HIERARCHICAL ACTION

In this section, we propose two multistep action primitives,
the contact primitive and the shape primitive to achieve the task
in a coarse-to-fine manner. The switch between them depends
on the analysis of the contact completion, as illustrated in Fig. 4.
Sharing the same classical pick-and-place manipulation config-
uration, we first detail the contact primitive (Section IV-A) and
highlight the difference of the shape primitive (Section IV-B)
afterward.

A. Contact Primitive

The goal of the coarse shaping is to make suitable contacts
between the DLO and all fixtures according to the goal configu-
ration I∗. We design the contact primitive to achieve it, including
selecting a target fixture ck in high-level and controlling motion
to make corresponding contacts. The whole algorithm of this
primitive is shown in Alg. 1.

Fig. 5(a) illustrates the effects of fixtures in shaping a DLO
as S∗, in which each fixture ck supports its adjacent elements of
the DLO to constrain its mobility. Our SelectFixture function
searches the target fixture along the sequence of k = 2, . . . ,K, 1
and stops once the contacts of the corresponding fixture ck is
incomplete. Note that we prioritize the fixtures in the middle
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Algorithm 1: ContactPrimitive(S[t], P [t], C,J ,B,B′).
SelectFixture(S[t],B)→ ck
SearchGrasp(P [t], C, ck,J )→ TL, TR
if AssignRole(ck, B′k ∈ B′)→ γ = LEFTthen
TL∪ ArrangeMotion(ck, B′k ∈ B,′ γ)→ TL
else
TR∪ ArrangeMotion(ck, B′k ∈ B,′ γ)→ TR

Fig. 5. Graphical explanation of the function SelectFixture. (a) The distance
thresholds τi and τe describe the support area of the fixture to the DLO. (b) The
thresholds τc and τa constraint the triangular search region for each benchmark
Bkb.

since the contacts at the edge are easily affected. To analyze
contacts mathematically, we quantify the operation region of
the fixture ck supporting the DLO as the goal state S∗ with three
benchmarks {Bkb|b = 1, 2, 3}; thus the complete benchmark set
for all fixtures is B = {Bkb|k = 1, . . . ,K, b = 1, 2, 3}. In the
following, we first introduce the definition of the benchmark set
B and explain the details about contact evaluation.

The benchmarks (Bk1, Bk2) are defined as the elements of the
goal S∗ locating on the edge of a local region around the fixture
ck. We obtain them through a constrained optimization:

Bk1 = argmax
s∗i
||s∗i − ck||2, Bk2 = argmax

s∗i
||s∗i −Bk1||2

s.t. τi < ||s∗i − ck||2 < τe
(5)

where (τi, τe) are distance thresholds of the local region. Another
benchmark Bk3 is defined as the nearest element s∗i of the goal
S∗ to the fixture ck,

Bk3 = argmin
s∗i
||s∗i − ck||2 (6)

Fig. 5(a) shows that the benchmark set {Bkb|b = 1, 2, 3} effec-
tively reflect the completion of contacts. Then, we re-order the
benchmark Bkb ∈ B along the keypoints P ∗.

For a fixture ck, we consider the corresponding contacts are
completed only if the DLO S[t] covers the operation region
defined by {Bkb|b = 1, 2, 3}. Specifically, at least one element
s
[t]
i ∈ S[t] is found that satisfies both the distance and direction

conditions for each benchmark in {Bkb|b = 1, 2, 3}. Fig. 5(b)
graphically illustrates the conditions around the fixtures. Mathe-
matically, we implement a constrained optimization with respect
to each benchmark {Bkb|b = 1, 2, 3}:

find s
[t]
i ∈ S[t]

s.t. ||si −Bkb||2< τc
〈< −−→cksi,

−−−→
ckBkb〉 > < τa

(7)

where (τc, τa) are the distance and angle thresholds of the
evaluation respectively.

Fig. 6. Graphical explanation of the low-level motion control. (a) The direction
of the search scheme about grasping points. (b) The selection (purple box) of
the corresponding pair of individual keypoints in the shape primitive.

Our low-level controller takes the target fixture ck (obtained
by the SelectFixture function) as input and output the action se-
quences (TL, TR). The whole procedure of the action sequences
(TL, TR) includes: 1) Search the grasp points; 2) Assign the
roles; 3) Arrange the motion to make contacts.

SearchGrasp: Considering the state space, we search the
grasping points based on P [t]. To associate the benchmark to
the sequential keypoints, we pair Bkb and p∗j with Euclidean
distance, using J = {Jkb|k = 1, . . . ,K, b = 1, 2, 3} to mark
the corresponding index:

Jkb = argmin
j
||p∗j −Bkb||2 (8)

Our search direction with respect to the sequential Jkb is divided
into two cases, as shown in Fig. 6(a). When ck is in the inter-
mediate (Jk2 in Fig. 6(a)), we search the keypoints P [t] from
the index Jk2 to the ends, while the direction is reversed for ck
is on the end (J ′k2 in Fig. 6(a)). This definition allows robots to
manipulate a relatively large portion of the DLO and avoid the
collision between them. This search paradigm undertakes under
the constraints of the robotic system, including the operation
range and fixture obstacles.

AssignRole: Two roles, holding and moving, are defined for
individual robotic arms respectively, which correspondingly act
as limiting the displacement of the unrelated elements of the
DLO and making contacts. We assign the left arm as the moving
role (namely γ = Left) if the benchmark Bk2 is within its
reachability and vice versa (namely γ = Right).

ArrangeMotion: We arrange the local motion based on the
potential field [24] to avoid the collision with the fixtures.
Specifically, we consider fixtures providing repulsion forces to
robots and extend the benchmark Bkb ∈ B to B′kb ∈ B′ with a
threshold τb:

B′kb = Bkb + τb ·
−−−→
ckBkb/||Bkb − ck||2, (9)

According to the role mode γ, the sequence of the waypoints
in the motion is (Bk3,

′Bk2,
′B′k1) for γ = Left otherwise

(Bk1,
′Bk2,

′B′k3) for γ = Right. The goal of this motion is
to manipulate the relevant elements of the DLO to the operation
area of the fixture ck to make contacts. During the manipulation,
the holding arm keeps grasping the selected keypoint and the
moving one follows a sequence of actions after grasping: 1) lift;
2) move to the first waypoint; 3) lower down; 4) move to the rest
waypoints sequentially.

The 4-DOF pose in a table-top environment is defined asπj =
{�χj , �ηj}, where �χj and �ηj are position and direction vectors of
3× 1. These two entities are defined by:

�χj = B′kb, �ηj ·
−−−→
ckB

′
kb = 0 (10)
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B. Shape Primitive

The goal of the shape primitive is to fine-tune the DLO to
match the goal S∗. Fig. 6(b) conceptually depicts the overview
of the primitive based on encoded keypoints. We define the shape
error ΔP to the goal P ∗ as:

ΔP =
1

M

M∑
j=1

||p[t]j − p∗j ||2 (11)

Intuitively, we select two keypoints whose errors between the
current stage P [t] and the goal stage P ∗ are largest for bimanual
manipulation:

g ← argmax
j
||p[t]j − p∗j ||2, g′ ← arg max

j,j �=g
||p[t]j − p∗j ||2 (12)

We reorder (g, g′) and reassign it to the dual-arm robot by

gL, gR ← min(g, g′),max(g, g′) (13)

where (g, g,′ gL, gR) are indexes of the ordered keypoints. Simi-
lar to the contact primitive, we define the search paradigm under
the system constraints as gL to 1 for left arm and gR to m for
the right arm, respectively. Then, we define the target pose with
respect to the g-th keypoint p∗g:

πg = {�p∗g, δp∗g} (14)

where δp∗g is tangent of p∗g . This shape primitive iterates until
the desired goal is reached.

V. RESULTS

A. Hardware Setup

As illustrated in Fig. 1, our bimanual experimental platform
consists of two UR3 robotic manipulators equipped with 2-
fingered Robotiq grippers. To facilitate the bimanual manipu-
lation, they face each other with an interval of 0.6m. An Intel
Realsense L515 camera is mounted to sense the top-down view
of the manipulation space with a resolution of 1280× 780. The
spatial transformation between the depth camera and dual-arms
(TL,TR) is calibrated through the markers. Each fixture is
a cylinder (radius=4 cm,height=1 cm), localized via ArUco
markers. All fixtures are glued on the table, keeping them stable
during the whole manipulation process. The fixtures are conven-
tionally ordered according to the detected sequential keypoints
P ∗ concerning the goal shape of DLO S∗. Considering the
physical limitations, the operation space of individual robots
is constrained to a ring-shaped region.

B. Representation

For perception in real environment, we utilize OpenCV [25]
to segment the DLO S[t] from the raw observation I [t] with
a morphological operation-based color filter, represented as a
binary image. To balance the accuracy and efficiency, we resized
S[t] to 128× 64 for the following processing.

In this section, we introduce the superiority of our synthetic-
based feature extraction without any manual data collection and
annotations. To reduce the gap between simulation and reality,

Fig. 7. Visualizations of synthetic dataset and the comparison with the real
collected data. (a) Visual observation. (b) Extracted state of the DLO by the
color filter. (c) Rendered state of the DLO. (d) Rendered keypoints of the DLO.

Fig. 8. Details about the perception network. (a) Architecture of the FCN
network. (b) Loss convergence of training, validation, testing, and transferring.

the synthetic dataset needs to render the physics. We quantita-
tively and qualitatively evaluate the robustness and accuracy of
the perception model.

Fig. 7 visualizes the synthetic dataset concerning the real data.
Note that Fig. 7(a)–(b) is designed manually to act as references
to have an intuitive comparison with the simulated Fig. 7(c)–(d).
These graphical results validate the visual similarity with the real
dataset. Our synthetic dataset includes 7040 labeled images in to-
tal, divided into a training dataset and a testing dataset with a ratio
of 10:1. Each sample is rendered as a binary image, containing
a randomly generated curve and M = 16 corresponding sorted
keypoints in image coordinates. To improve the variation of the
dataset, the geometry features of the DLO, including radius,
length, and the number of segments, are randomly generated
over a wide range.

Based on the synthetic dataset, we train our supervised key-
point detection network G(·), whose architecture is shown in
Fig. 8(a). As a fully convolution network [26], it only involves
convolution layers with a similar structure to VGG [27]. In the
last layer, we apply1× 1 convolution to regress the dimension of
the output as 2× 16, where each column represents the position
pj = (uj , vj) in the image frame. The training is optimized
based on the smooth L1 loss function

L1(y, ŷ) =

{
1
2 (y − ŷ)2 for |y − ŷ| ≤ 1

|y − ŷ| − 0.5 otherwise
(15)

where y and ŷ denote the ground truth and the output of the
training, respectively. Fig. 8(b) shows the corresponding loss
trend for training, testing, and transferring. Note that both train-
ing and testing are implemented with our synthetic dataset for
efficient processing. In addition, the transfer loss is evaluated on
the real data collection with manual annotation, which includes
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Fig. 9. Visualization of the predicted keypoints according to the surrounding
geometric features. (a) Raw output of the network. (b) Fine-tuning results.

TABLE I
COMPARISON OF KEYPOINT DETECTION PERFORMANCE

Geo: Geometric-based method; Our: Our data-driven algo-
rithm. μC , σ2

C : Mean and variance of corner error EC .
μP , σ2

P : Mean and variance of keypointd error EP .

fifty samples. Note that this manual collection dataset is only for
evaluation and is not used to train the network. The promising
results reveal the advantages of our perception method: 1) our
synthetic dataset holds a high similarity with the real data to
avoid manual collection; 2) the keypoint detection network
converges to minimize the detection error; (3) the perception
model is general to unseen samples in testing (simulation) and
transferring (real).

As discussed above, geometric fine-tuning is proposed to
account for the residual error. Fig. 9(a) illustrates several failure
cases, in which some detected keypoints drop out from the
positive region of the DLO, mainly on the steep area of the
curve. Comparatively, Fig. 9(b) visualizes the keypoints with
fine-tuning, graphically indicating that this method improves
the representation level of the sequential keypoints.

Compared with data-driven learning models, manual de-
signed descriptor is an alternative for keypoint detection due
to its intuitiveness and interpretability. Here, we provide a com-
parison between our method and a traditional geometric-based
baseline, whose steps include skeletonizing DLOs via [28] from
S[t], searching the corners of DLOs according to the mesh grids,
sorting and sampling the keypoints based on nearest neighbor
search. Our error metrics include the cornerEC and the keypoint
detection errorEP , which are defined asEC = 1

2 (||p̂1 − p1||2 +
||p̂M − pM ||2) and EP = 1

M

∑j=M
j=1 ||p̂j − pj ||2, respectively.

We emphasize the corner error EC here since it is the symbol
to order the keypoints. Statistically, we leverage the mean value
(μC , μP ) and the variance (σ2

C , σ
2
P ) to evaluate their perfor-

mance comprehensively. Note that pj and p̂j are the ground truth
of the dataset and the output of the corresponding algorithm,
respectively. The comparison results are shown in Table I. Due
to the substantial diversity of the state space of DLOs, it is very
difficult to manually develop a sequential keypoint detection
method that is robust to various configurations. Conversely, our
perception network is robust with its data-driven manner.

A key issue about descriptors is their representation level ver-
sus the original data. Since we only predict keypoints of DLOs

TABLE II
COMPARISON OF KEYPOINT DETECTION PERFORMANCE ON SYNTHETIC

DATASET

FCN-L: label of the FCN; FCN-R: raw output of the FCN; FCN-F: fine-tuning FCN; LR:
linear regression; CNN: convolutional neural network; PC [29]: point cloud.

based on the link-chain model, we reconstruct the original shape
through end-to-end connection. For comparisons, we consider
various unsupervised auto-encoders [10], whose goal is also to
extract a compact latent code about the high-dimensional data.
We choose three baselines to adapt to our case 1) fully connected
linear regression (LR), 2) convolutional neural network (CNN),
and 3) PointNet [29] (PC). Specifically, the training of LR
and CNN autoencoders is conducted based on the binary cross
entropy (BCE) loss LBCE , while PC autoencoder is optimized
through Chamfer distance d. They are defined as:

LBCE = −
n∑

i=1

yi log ŷi + (1− yi) log (1− ŷi)

d
(
Ŷ , Y

)
=

∑
ŷ∈Ŷ

min
y∈Y
‖ŷ − y‖22 +

∑
y∈Y

min
ŷ∈Ŷ
‖ŷ − y‖22 (16)

According to the network structure, LR and CNN take the 2D
image format as input, while PC utilizes the 3D point cloud with
the same size after downsampling.

Since our original stateS[t] is a binary image, the shape recon-
struction issue here is formulated as a classification concerning
each pixel S[t](u, v). Due to the original output of the above
autoencoders in the image format (LR, CNN) is continuous value
in [0,1], we consider it as the probability about the existence of
the element of the DLO. In addition, we set a threshold τ = 0.5
to transfer the continuous output into a discrete binary value.
Hence, our evaluation metrics are L1 lossL1 for original contin-
uous output and IoU (Intersection over Union) for thresholding
binary values between the reconstructed output and the original
information, respectively:

L1 =

n∑
i=1

|yi − ŷi|, IoU =
ŷ ∩ y

ŷ ∪ y
(17)

Table II shows the comparison results. Note that FCN-L method
utilizes the labeled keypoints for reconstruction and acts as
ground truth for our data-driven representation. The fine-tuning
output of our perception improves greatly compared with the
raw output of the network FCN-R. Compared with LR and CNN
autoencoders, our proposed FCN-F performs better both in L1
loss and IoU. The main reason is that autoencoders aim to recon-
struct the entire information of the input (even the details) instead
of paying attention to the fundamental features. Although [29]
achieves well in L1 loss, its performance concerning IoU is poor.
This is because it is only able to reconstruct the original data
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Fig. 10. Our designed DLO manipulation with environmental contacts sce-
narios. From left to right: the start state, the goal state and achieved state with
our framework. All the images are taken by our top-down Realsense L515 depth
camera.

Fig. 11. The procedure of a typical coarse-to-fine manipulation example.

with a fixed size (due to the identical input dimension); thus
loses some information inevitably.

C. Manipulation

To validate our hierarchical action framework, we evaluate the
performance with multiple experiments using various fixtures
configurations and goals. Fig. 10 shows four designed tasks in
our experiment. Note that the configuration of the DLO at the
beginning S[0] is placed randomly on the table and the desired
goal is provided artificially. For each experiment, we assume
that the goal shape S∗ keeps stable with the support of the
fixtures and the table. The third column in Fig. 10 illustrates
our achieved results. Since our hierarchical action framework
is iterative, the robot continuously manipulates the DLO until
the shape similarity between the goal S∗ and the achieved one
S[t] reaches a given threshold. In this experimental study, the
shaping tasks are conducted with multistep actions depending
on the feature extraction of DLOs without learning their physical
dynamics.

As a multistep decision-making process, we provide a typical
example of the manipulation, as shown in Fig. 11. At the
beginning, our algorithm computes the prior knowledge for
the hierarchical action framework based on the goal image I∗:
1) segment the DLO S∗ with the color filter and detect the
corresponding sequential keypoints P ∗ through our perception

Fig. 12. Shape error minimization. (a) IoU between the goal state S∗ and the
stateS[t]. The red line represents the successful baseline and also the termination
conditions. (b) The keypoints error between P ∗ and P [t].

network and 2) localize the fixtures C = {c1, . . . , ck, . . . , cK}
and compute the contact-based benchmarks (B,B,′ J ). Then,
our algorithm enters into the action loop. At each time-step t,
we sense the DLO S[t] and detect its keypoints P [t] via our
perception network. With this, we check the contact completion
based on our search benchmarksB. If it is incomplete, we utilize
the contact primitive to make contacts with the corresponding
fixture ck. Once the action sequences (TL, TR) is accomplished,
we update the state of the DLO S[t+1] and check the contact
completion again. If the contact constraints are complete, we
move on to the shape primitive for fine-tuning. The entire algo-
rithm iterates until reaching the goal state S∗, which the criteria
is defined as the binary IoU between S[t] and S∗ according
to (17) should be larger than 40%. Note that we choose IoU
as the evaluation metric since it is intuitive to measure their
similarity ratio and the comparison objects are both binary.
We also provide supplementary material for robotic bimanual
manipulation videos.

Based on the goal shape in Fig. 10, we implement four trials
under various initial configurations. Fig. 12 depicts the quanti-
tative measurements of the scenarios in Fig. 10. Specifically, the
minimization of the magnitude error ΔP is shown in Fig. 12(b).
These results corroborate that the detected sequential keypoints
can be used to manipulate the DLO into the desired specification.
Fig. 12(a) demonstrates the similarity level of the state at each
time step with the goal shape S∗, which IoU= 40% serves
as a baseline. Note that the IoU value decreases compared to
the previous time step in some cases since the contact-based
manipulation task is not continuous. Hence, a coarse-to-fine
manner is necessary for this challenging task, otherwise, we
probably get stuck in a local optimum. These results also reveal
that our algorithm is superior in feature description and action
planning versus this kind of challenging task.

Although our action framework is capable of dealing with the
majority of these challenging tasks, there are some cases that
the system fails. Fig. 13 presents two typical failure examples.
Although our perception network plays well in most cases, its
performance is severely affected by rolling (a region of high
curvature to form a closed loop). That is because the convolution
is not good at dealing with the details of the pixels and the
fine-tuning regresses the keypoints to the wrong section of the
DLO, resulting in disordered keypoints. Another case is caused
by the lack of physical dynamics. Without any forecasting and
feedback, our framework replans the action in an open-loop
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Fig. 13. Graphical representation about the failure cases. (a) Rolling. (b) Open-
loop control.

form. Thus, the system probably traps in a local area around
a fixture.

VI. CONCLUSION

In this letter, we demonstrate a keypoint-based bimanual
manipulation for DLOs under environmental constraints. Train-
ing on a synthetic image dataset, our perception model de-
scribes a DLO with sequential keypoints. The hierarchical action
framework performs the task with two defined primitives in a
coarse-to-fine manner. The whole algorithm is explicit without
requiring any manual data collection and annotations. However,
our methods exhibit some limitations. The perception network
has poor performance in the knotted case. As an open-loop
method, the stability of the planner is not guaranteed. For future
directions, we are interested to include the prior spatial-temporal
knowledge about the DLO into the perception and the effect of
the action as feedback to form a closed-loop control system [30].
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